PAML (Phylogenetic Analysis by Maximum Likelihood)

A program package by Ziheng Yang (Demonstration by Joseph Bielawski)

What does PAML do?

Features include:

- $\boldsymbol{\cdot}$ estimating synonymous and nonsynonymous rates
- testing hypotheses concerning d_N/d_S rate ratios
- \cdot various amino acid-based likelihood analysis
- \cdot ancestral sequence reconstruction (DNA, codon, or AAs)
- \cdot various clock models
- $\cdot\,$ simulating nucleotide, codon, or AA sequence data sets
- \cdot and more

Downloading PAML

PAML download files are at:

http://abacus.gene.ucl.ac.uk/software/paml.html

Executables for Windows

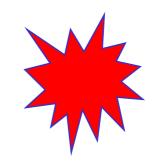
C source for MacOSX and Unix/Linux

Programs in the package

baseml	for bases
basemlg	continuous gamma for bases
codeml	aaml for amino acids & codonml for codons
evolver	simulation, tree distances
yn00	$d_{\rm N}$ and $d_{\rm S}$ by Yang & Nielsen (2000)
chi2	chi square table
pamp	parsimony (Yang and Kumar 1996)
mcmctree	Bayesian MCMC divergence time estiamtion, under soft bounds (Yang & Rannala 2006)

Running PAML programs

- 1. Sequence data file
- 2. Tree file
- 3. Control file (*.ctl)


The sequence file

sequence_1	TCATT	CTATC	TATCG	TGATG
sequence_2	TCATT	CTATC	TATCG	TGATG
sequence_3	TCATT	CTATC	TATCG	TGATG
sequence_4	TCATT	CTATC	TATCG	TGATG

4 20

sequence_1TCATTCTATCTATCGTGATG
sequence_2TCATTCTATCTATCGTGATG
sequence_3TCATTCTATCTATCGTGATG
sequence_4TCATTCTATCTATCGTGATG

Plain text format in "PHYLIP" format Use at least 2 spaces to separte the name and sequence.

Running PAML programs: the tree file

Format = parenthetical notation

Examples:

((1,2),3),4,5);

((1,2),3),4),5);

(((1:0.1, 2:0.2):0.8, 3:0.3):0.7, 4:0.4, 5:0.5);

(((Human:0.1, Chimpanzee:0.2):0.8, Gorilla:0.3):0.7, Orangutan:0.4, Gibbon:0.5);

Maximum Likelihood Methods for Detecting Adaptive Protein Evolution

Joseph P. Bielawski and Ziheng Yang

in

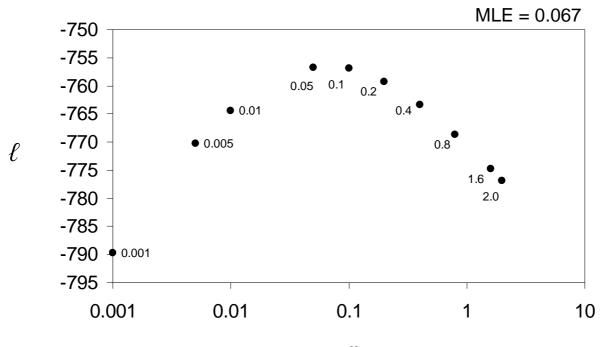
Statistical methods in Molecular Evolution (R. Nielsen, ed.), Springer Verlag Series in Statistics in Health and Medicine. New York, New York.

Exercises:

	Method/model	program	dataset
1	Pair-wise ML method	codeml	Drosophila GstD1
2	Pair-wise ML method	codeml	Drosophila GstD1
3	M0 and "branch models"	codeml	<i>Ldh</i> gene family
4	M0 and "site models"	codeml	HIV-2 <i>nef</i> genes

Exercise 1:	Empirical demonstration: pairwise estimation of the d_N/d_S ratio for GstD1
Dataset:	<i>GstD1</i> genes of <i>Drosophila melanogaster</i> and <i>D. simulans</i> (600 codons).
Objective:	Evaluate the likelihood function for a variety of fixed values for the parameter ω. 1- "by hand" 2- Codeml's hill-climbing algorithm

Running PAML programs: the "*.ctl" file


Codeml.ctl

```
seqfile = seqfile.txt * sequence data filename
  outfile = results.txt * main result file name
   noisy = 9
                   * 0,1,2,3,9: how much rubbish on the screen
 verbose = 1
                   * 1:detailed output
  runmode = -2 * -2:pairwise
  seqtype = 1
                   * 1:codons
CodonFreq = 3
                   * 0:equal, 1:F1X4, 2:F3X4, 3:F61
    model = 0
                   *
 NSsites = 0
                   *
    icode = 0
                   * 0:universal code
                   * 1:kappa fixed, 0:kappa to be estimated
fix kappa = 0
   kappa = 2
                   * initial or fixed kappa
fix_omega = 1 * 1:omega fixed, 0:omega to be estimated
    omega = 0.001 * 1<sup>st</sup> fixed omega value [CHANGE THIS]
   *alternate fixed omega values
   *omega = 0.005 * 2<sup>nd</sup> fixed value
   *omega = 0.01 * 3<sup>rd</sup> fixed value
   *omega = 0.05
                 * 4<sup>th</sup> fixed value
                  * 5<sup>th</sup> fixed value
   * omega = 0.10
```

- *omega = 0.20 * 6th fixed value
- *omega = 0.40 * 7th fixed value
- *omega = 0.80 * 8th fixed value
- *omega = 1.60 * 9th fixed value *omega = 2.00 * 10th fixed value

Plot results:

Likelihood score vs. omega

 ω

Exercise 2:	Empirical demonstration: sensitivity of d_N/d_S ratio to assumptions
Dataset:	<i>GstD1</i> genes of <i>Drosophila melanogaster</i> and <i>D. simulans</i> (600 codons).
Objective:	1- Test effect of transition / transversion ratio (κ) 2- Test effect of codon frequencies (π_l 's) 3- Determine which assumptions yield the largest and smallest values of <i>S</i> , and what is the effect on ω

Assumptions	К	S	N	$d_{\rm S}$	$d_{\rm N}$	ω	l
Fequal + $\kappa = 1$	1.0	?	?	?	?	?	?
Fequal + κ = estimated	?	?	?	?	?	?	?
$F3 \times 4 + \kappa = 1$	1.0	?	?	?	?	?	?
F3×4 + κ = estimated	?	?	?	?	?	?	?
F61 + $\kappa = 1$	1.0	?	?	?	?	?	?
F61 + κ = estimated	?	?	?	?	?	?	?

Table 1 Estimation of de and de botwoon Dresenhile melanogester and D simulans CstD1 gones

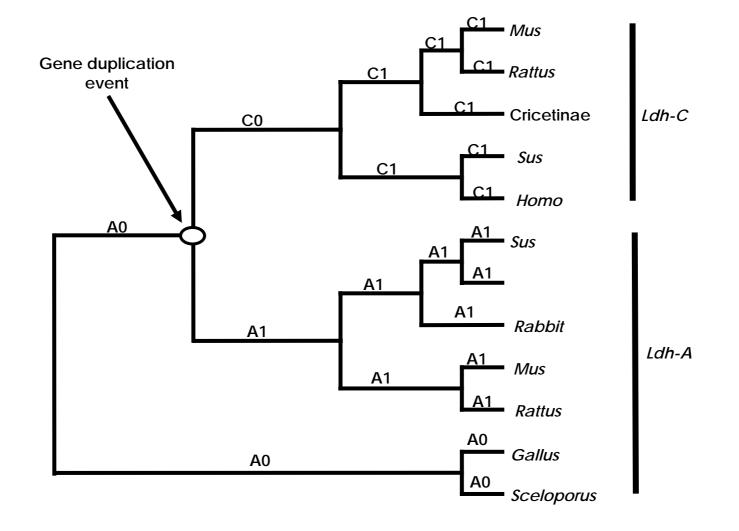
 κ = transition/transversion rate ratio

S = number of synonymous sites

- N = number of nonsynonymous sites
- $\omega = d_{\rm N}/d_{\rm S}$
- $\ell = \log$ likelihood score

```
seqfile = seqfile.txt * sequence data filename
     outfile = results.txt * main result file name
       noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
     verbose = 1  * 1:detailed output
     runmode = -2
                    * -2:pairwise
     seqtype = 1 * 1:codons
   CodonFreq = 0
                     * 0:equal, 1:F1X4, 2:F3X4, 3:F61 [CHANGE THIS]
       model = 0
                     *
     NSsites = 0
                     *
                    * 0:universal code
       icode = 0
   fix kappa = 1
                    * 1:kappa fixed, 0:kappa to be estimated [CHANGE THIS]
      kappa = 1
                     * fixed or initial value [CHANGE THIS]
   fix_omega = 0 * 1:omega fixed, 0:omega to be estimated
       omega = 0.5 * initial omega value
* Codon bias = none; Ts/Tv bias = none
* Codon bias = none; Ts/Tv bias = Yes (ML)
* Codon bias = yes (F3x4); Ts/Tv bias = none
* Codon bias = yes (F3x4); Ts/Tv bias = Yes (ML)
* Codon bias = yes (F61); Ts/Tv bias = none
* Codon bias = ves (F61); Ts/Tv bias = Yes (ML)
```

sumptions	К	S	Ν	$d_{\rm S}$	$d_{ m N}$	ω	ℓ
F 1 1	1.0	1520	4 4 17 1	0.0776	0.0012	0.074	00710
Fequal, $\kappa = 1$	1.0	152.9	447.1	0.0776	0.0213	0.274	-927.1
Fequal, κ = estimated	1.88	165.8	434.2	0.0221	0.0691	0.320	-926.2
F3×4, $\kappa = 1$	1.0	70.6	529.4	0.1605	0.0189	0.118	-844.5
F3×4, κ = estimated	2.71	73.4	526.6	0.1526	0.0193	0.127	-842.2
F61, $\kappa = 1$	1.0	40.5	559.5	0.3198	0.0201	0.063	-758.5
F61, κ = estimated	2.53	45.2	554.8	0.3041	0.0204	0.067	-756.5


Table 1. Estimation of d_S and d_N between *Drosophila melanogaster* and *D. simulans GstD1* genes

Exercise 3: LRT for variation in selection pressure among branches in *Ldh*

Dataset: The *Ldh* gene family is an important model system for molecular evolution of isozyme multigene families. The rate of evolution is known to have increased in in *Ldh*-C following the gene duplication event

Objective: Evaluate the following:

- 1- an increase in the underlying mutation rate of Ldh-C
- 2- burst of positive selection for functional divergence following the duplication event
- 3- a long term change in selection pressure

$$H_{0}: \omega_{A0} = \omega_{A1} = \omega_{C1} = \omega_{C0}$$

$$H_{1}: \omega_{A0} = \omega_{A1} = \omega_{C1} \neq \omega_{C0}$$

$$H_{2}: \omega_{A0} = \omega_{A1} \neq \omega_{C1} = \omega_{C0}$$

$$H_{3}: \omega_{A0} \neq \omega_{A1} \neq \omega_{C1} = \omega_{C0}$$

```
seqfile = seqfile.txt * sequence data filename
     treefile = tree.txt
                              * tree structure file name [CHANGE THIS]
      outfile = results.txt  * main result file name
       noisv = 9
                       * 0,1,2,3,9: how much rubbish on the screen
      verbose = 1
                       * 1:detailed output
      runmode = 0
                       * 0:user defined tree
      seqtype = 1
                       * 1:codons
    CodonFreg = 2
                       * 0:equal, 1:F1X4, 2:F3X4, 3:F61
        model = 0
                       * 0:one omega ratio for all branches
                       * 1:separate omega for each branch
                       * 2:user specified dN/dS ratios for branches
      NSsites = 0
                       *
                       * 0:universal code
        icode = 0
    fix_kappa = 0
                       * 1:kappa fixed, 0:kappa to be estimated
        kappa = 2
                       * initial or fixed kappa
    fix_omega = 0
                       * 1:omega fixed, 0:omega to be estimated
        omega = 0.2
                    * initial omega
*H_0 in Table 3:
*model = 0
*(X02152Hom, U07178Sus, (M22585rab, ((NM017025Rat, U13687Mus),
*(((AF070995C,(X04752Mus,U07177Rat)),(U95378Sus,U13680Hom)),(X538280G1,
* U284100G2))));
*H_1 in Table 3:
*model = 2
*(X02152Hom, U07178Sus, (M22585rab, ((NM017025Rat, U13687Mus), (((AF070995C,
*(X04752Mus,U07177Rat)),(U95378Sus,U13680Hom))#1,(X538280G1,U284100G2))
* )));
*H<sub>2</sub> in Table 3:
*model = 2
* (X02152Hom, U07178Sus, (M22585rab, ((NM017025Rat, U13687Mus), (((AF070995C
* #1, (X04752Mus #1, U07177Rat #1)#1, (U95378Sus #1, U13680Hom #1)
* #1)#1,(X538280G1,U284100G2)))));
*H_2 in Table 3:
*model = 2
* (X02152Hom, U07178Sus, (M22585rab, ((NM017025Rat, U13687Mus), (((AF070995C
* #1,(X04752Mus #1,U07177Rat #1)#1,(U95378Sus #1,U13680Hom #1)
* #1)#1,(X538280G1 #2,U284100G2 #2)#2))));
```

Parameter estimates under models of variable ω ratios among lineages and LRTs of their fit to the *Ldh-A* and *Ldh-C* gene family.

Models ^{<i>a</i>}	$\omega_{\rm A0}$	ω_{A1}	Ю _{C1}	$\omega_{\rm C0}$	l	LRT
H ₀ : $\omega_{A0} = \omega_{A1} = \omega_{C1} = \omega_{C0}$	0.14	= <i>w</i> _{A.0}	= <i>w</i> _{A.0}	= <i>w</i> _{A.0}	-6018.63	NA
H ₁ : $\omega_{A0} = \omega_{A1} = \omega_{C1} \neq \omega_{C0}$	0.13	= <i>w</i> _{A.0}	= <i>w</i> _{A.0}	0.19	-6017.57	$P = 0.14^{b}$
H ₂ : $\omega_{A0} = \omega_{A1} \neq \omega_{C1} = \omega_{C0}$	0.07	= <i>w</i> _{A.0}	0.24	= <i>w</i> _{C.1}	-5985.63	P < 0.0001 ^c
H ₃ : $\omega_{A0} \neq \omega_{A1} \neq \omega_{C1} = \omega_{C0}$	0.09	0.06	0.24	= <i>w</i> _{C.1}	-5984.11	$P = 0.08^{d}$

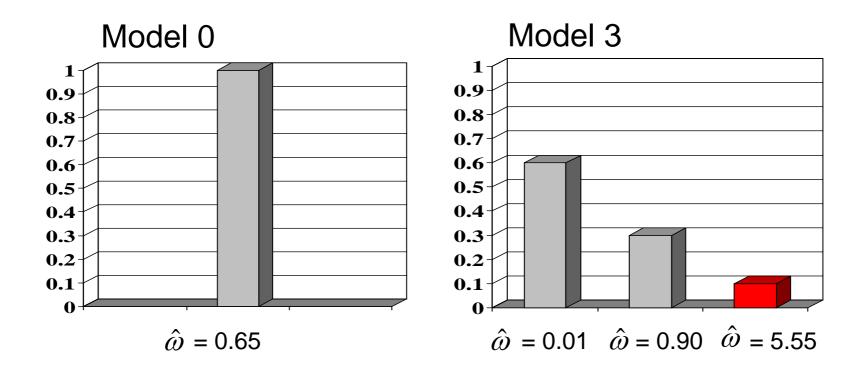
^{*a*} The topology and branch specific ω ratios are presented in Figure 5.

 b H₀ v H₁: df = 1

 c H₀ v H₂: df = 1

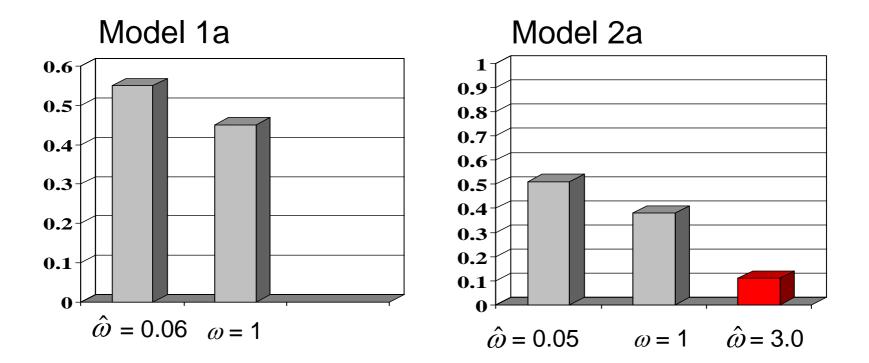
 d H₂ v H₃: df = 1

Exercise 4: Test for adaptive evolution in the *nef* gene of human HIV-2 gene

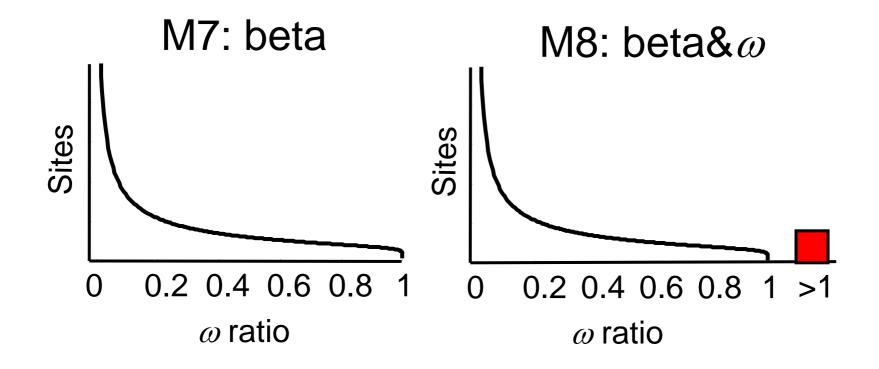

Dataset:

et: 44 *nef* alleles from a study population of 37 HIV-2 infected people living in Lisbon, Portugal. The *nef* gene in HIV-2 has received less attention than HIV-1, presumably because HIV-2 is associated with reduced virulence and pathogenicity relative to HIV-1

Objective:1- Test for sites evolving under positive selection2- Identify sites by using empirical Bayes


 H_0 : uniform selective pressure among sites (M0) H_1 : variable selective pressure among sites (M3)

Compare $2\Delta I = 2(I_1 - I_0)$ with a χ^2 distribution


 H_0 : variable selective pressure but NO positive selection (M1a) H_1 : variable selective pressure with positive selection (M2a)

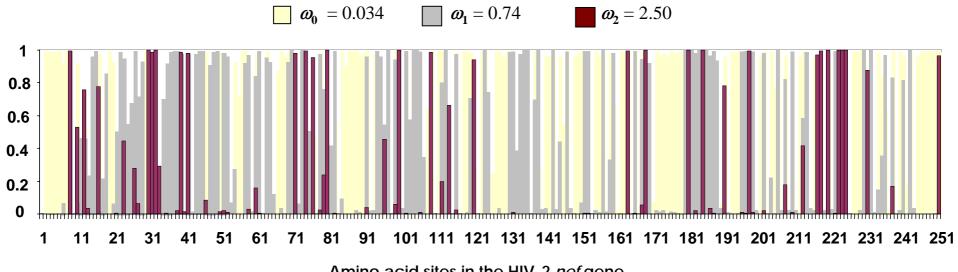
Compare $2\Delta l = 2(l_1 - l_0)$ with a χ^2 distribution

 H_0 : Beta distributed variable selective pressure (M7) H_1 : Beta plus positive selection (M8)

Compare $2\Delta I = 2(I_1 - I_0)$ with a χ^2 distribution


```
seqfile = seqfile.txt
                         * sequence data filename
 treefile = tree.txt
                         * tree structure file name
 outfile = results.txt * main result file name
   noisy = 9
                   * 0,1,2,3,9: how much rubbish on the screen
 verbose = 1
                   * 1:detailed output
 runmode = 0
                   * 0:user defined tree
                   * 1:codons
 seqtype = 1
CodonFreg = 2
                   * 0:equal, 1:F1X4, 2:F3X4, 3:F61
   model = 0
                   * 0:one omega ratio for all branches
 NSsites = 0
                   * 0:one omega ratio (M0 in Tables 2 and 4)
                   * 1:neutral (M1 in Tables 2 and 4)
                   * 2:selection (M2 in Tables 2 and 4)
                   * 3:discrete (M3 in Tables 2 and 4)
                   * 7:beta (M7 in Tables 2 and 4)
                   * 8:beta&w; (M8 in Tables 2 and 4)
   icode = 0
                   * 0:universal code
fix kappa = 0
                   * 1:kappa fixed, 0:kappa to be estimated
   kappa = 2
                   * initial or fixed kappa
fix omega = 0
                   * 1:omega fixed, 0:omega to be estimated
   omega = 5
                   * initial omega
                   *set ncatG for models M3, M7, and M8!!!
   *ncatG = 3
                   * # of site categories for M3 in Table 4
   *ncatG = 10
                   * # of site categories for M7 and M8 in Table 4
```

Parameter estimates and likelihood scores under models of variable ω ratios among sites for HIV-2 *nef* genes.


Nested model pairs	$d_{\rm N}/d_{\rm S}{}^b$	Parameter estimates ^c	PSS ^d	l
M0: one-ratio $(1)^a$	0.505	$\omega = 0.505$	none	-9775.77
M3: discrete (5)	0.629	$p_{0,} = 0.48, p_{1,} = 0.39, (p_2 = 0.13)$ $\omega_0 = 0.03, \omega_1 = 0.74, \omega_2 = 2.50$	31 (24)	-9232.18
M1: neutral (1)	0.63	$p_0 = 0.37$, $(p_1 = 0.63)$ $(\omega_0 = 0)$, $(\omega_1 = 1)$	not allowed	-9428.75
M2: selection (3)	0.93	$p_0 = 0.37, p_1 = 0.51, (p_2 = 0.12)$ ($\omega_0 = 0$), ($\omega_1 = 1$), $\omega_2 = 3.48$	30 (22)	-9392.96
M7: beta (2) M8: beta& <i>ω</i> (4)	0.423 0.623	P = 0.18, q = 0.25 $p_0 = 0.89, (p_1 = 0.11)$ $p = 0.20, q = 0.33, \omega = 2.62$	not allowed 27 (15)	-9292.53 -9224.31

 a The number after the model code, in parentheses, is the number of free parameters in the ω distribution.

^{*b*} This d_N/d_S ratio is an average over all sites in the HIV-2 *nef* gene alignment.

^c Parameters in parentheses are not free parameters.

^d PSS is the number of positive selection sites. The first number is the PSS with posterior probabilities > 50%. The second number, in parentheses, is the PSS with posterior probabilities > 95%.

Amino acid sites in the HIV-2 nef gene

Some recommendations:

- I. Do NOT use the free ratios model to derive a hypotheses that will be tested on the same data
- II. Do use multiple trees to conduct LRTs (*e.g.*, gene tree and species tree
- III. Do use M0, M1a, M2a, M3 (*k*=2 and 3), M7(*k*=10), M8a(*k*=10).
 - I. Do use $\chi^2_{df=4}$ to do LRT of M0 vs M3 (k = 3)
 - II. Do use $\chi^2_{df=2}$ to do LRT of M1a vs M2a
 - III. Do use $\chi^2_{df=2}$ to do LRT of M7 vs M8
- IV. Be aware of inherent limitations of these methods

Power and accuracy of LRT to detect positive selection

- χ^2 distribution does not apply when sample sizes are small
- χ^2 distribution (or mixture distributions) do not apply due to boundary problems
- χ^2 makes LRT conservative (type I error rate < alpha)
- LRT based on χ^2 can be powerful !!!
- Power is affected by (i) sequence divergence, (ii) number of lineages, and (iii) strength of positive selection
- The most efficient way to increase power is to add lineages !

Data from: Anisimova, Bielawski, and Yang, 2001, Mol. Bio. Evol. 18:1585-1592.

Power and accuracy of Bayes site predictions

• NEB predictions are unreliable when sequences are very similar and the number of lineages is small (e.g., $t \le 0.11$ or taxa ≤ 6)

• Increasing the number of lineages is the most efficient way to increase both accuracy (NEB) and power (NEB and BEB)

• Accurate prediction is possible for highly similar sequences, but only if very large numbers of lineages are sampled (NEB and BEB)

• Consistency among multiple models (robustness analysis) is an additional criterion for evaluating Bayes site predictions

Data from: Anisimova, Bielawski, and Yang, 2002, *Mol. Bio. Evol.* 19:950-958. Yang, Wong and Nielsen, 2005, *Mol. Bio. Evol.* 22:1107-1118. Major weaknesses:

- Poor tree search
- Poor user interface

Major strength:

• Sophisticated likelihood models